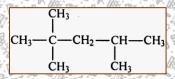
НАЧАЛО ОРГАНИЧЕСКОЙ ХИМИИ

Задание 1. Заполни пропуски.

Теория строения органических соединений А. М. Бутлерова

- 1. Во всех органических соединениях атом C находится в возбужденном состоянии, поэтому валентность C равна ______.
- 2. Важнейшее свойство углерода способность его атомов соединяться друг с другом
- 3. Атомы в молекулах органических веществ соединяются друг с другом в определенной последовательности согласно .

Задание 2. Дополни схему.

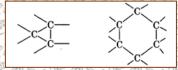

Формулы

Эмпирические – показывают

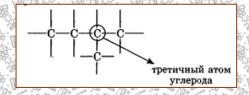
 C_2H_4 , C_3H_8

химическое строение вещества.

Задание 3. Найди все типы атомов углерода. Обведи соответствующей фигурой.



Обозначения типов атомов углерода:


первичный

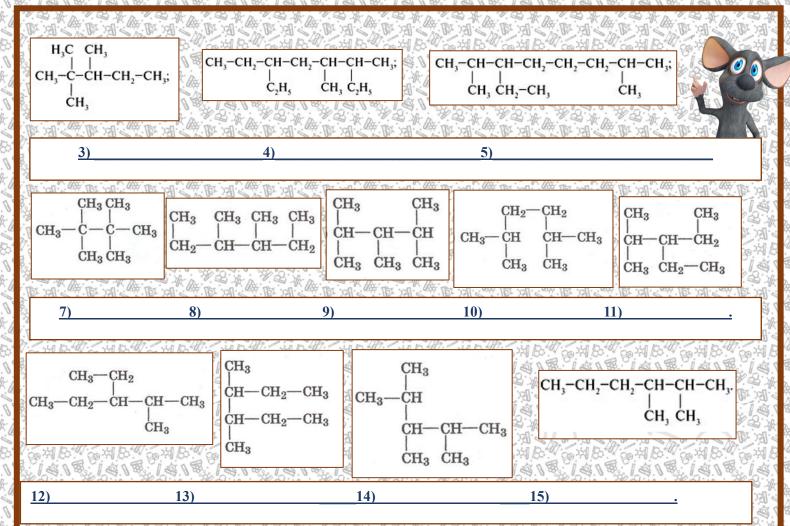
третичный

Задание 4. Соотнеси углеродные цепи с их типом.

1) прямые

2) разветвлённые

3) замкнутые


Изомеры – вещества, которые имеют _____ состав, но ____ строение молекул и различные свойства.

Задание 5. Составить изомеры для пентана, гексана.

Формула	Название
CH ₄	метан
C ₂ H ₆	этан
C ₃ H ₈	пропан
C_4H_{10}	бутан

C ₅ H ₁₂	пентан
C ₆ H ₁₄	гексан
C ₇ H ₁₆	гептан
C ₈ H ₁₈	октан
C ₉ H ₂₀	нонан
$\mathbf{C}_{10}\mathbf{H}_{22}$	декан

Углеводородные радикалы –	In a wall In				別
					3.
Days W.	метил	CH₃-	图 图 图	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	即河
Важнейшие УВ радикалы.	этил	C₂H₅-	A BUNG	TENDED DE	BY COL
главная цепь	пропил	C ₃ H ₇ -	64646		84
$H_3C-CH-CH_2-CH_2-CH_3$	изопро- пил	CH₃-ÇH-CH₃			18
CH ₃	бутил	C ₄ H ₉ -	18:19:08		
радикал	трет- бутил	CH₃-Ċ-CH₃ ĊH₃	Зад	ание 6. Заполни пропуски в	N. W.
	пентил	C ₅ H ₁₁ -	9	тексте.	3
	是 日 日 日	Ed Stell		E A SE A	S. S.
. (7.	Ти	пы органическ	ких реакций	i	İ
1. Реакции замещения В ходе реакций замещения один группы атомов. 2. Реакции присоединения Гидрирование — присоединение — присоед	е молекулы_			олекуле замещается на иные атомы или	
Гидрогалогенирование – присо				·	
Гидратация – присоединение _			<u>:</u>		
Полимеризация — образование	высокомоле	кулярного соеди	инения посре	едством многократного	į.
присоединения	тшеп пения	<u> </u>			
			еряют атомы	ы или группы атомов, и образуется нов	oe
вещество, содержащее		крат	тных связей.		
Дегидрирование – отщепления	•		<u>·</u>		
Дегидратация – отщепление мо Дегидрогалогенирования – отг	•				d
4. Реакции изомеризации и пер		•		<u> </u>	
В ходе таких реакций происходи			, т.е. г	переход атомов или групп атомов с одн	ого
участка молекулы в другое без и 5. Реакции окисления					
В результате воздействия		_ реагента прои	исходит	степени окисления углеро	ода
в органическом атоме, молекуле соединение.	или ионе пр	оцесс за счет от	гдачи электр	онов, вследствие чего образуется ново	e
6. Реакции разложения					3
Это процесс расщепления	0	рганического с	оединения н	а менее сложные или простые вещестн	за.
是四、四、世内。四、世内。四、世人	n. BATA	LB. W. W. B.	th. B. M.	·田安·西班西·西斯西·西斯西	0.10
W.		составления н	названия уг	леродов	
1. Выбирают самую длинную у					
2. Нумеруют атомы углерода, на				азветвление цепи (радикалы). ан заместитель (радикал), начиная с	
простейшего радикала. Если у о	дного атома				
повторяется дважды, через запя				\	
				икал). Число одинаковых радикалов	
указывают приставкой ди-, три- 5. Название углеводорода указы				длинной цепи	
J			,,	, , , , , , , , , , , , , , , , , , , ,	
1018 1018 1018 10	8.10.18		CH,	1018 1018 1018 1018	3.10
Задание 7. Назови следующ вещества.	цие		C-CH ₂ -CH ₃ .	CH ₃ -CH-CH-CH-CH ₃ ; CH ₃ CH ₃ CH ₃	四四日
TO THE WAY TO THE WAY TO THE WAY.	WAY TO TOTAL OFF	TO THE	Ċ₂H₅	下 用 等 图 网 等 图 网 等 图 网	Lips toll
	10000000000000000000000000000000000000	1)	*/16 0 ** */		1
	0 00 00 00 00 00 00 00 00 00 00 00 00 0	1 2 · 1 · 1 · 1 · 1 · 1 · 1	n · 3/20.51 ·	WAR WAR WAR	34 AQ.

Задание 8. Напиши структурные формулы соединений по их названиям: а) 2-метилбутан б) 4,4-диметилгептан в) 3-изопропилоктан, г) 2-метил-3,3-диэтилгептан, д) 1,4-дихлорпентан, е) 3,4,5-триметилгептан, ж) 2,5-диметилоктан.

Задание 9. Правильно прочитай положения теории Бутлерова А. М., зашифрованные в задании. Необходимо не только назвать положение, но и дать им точное определение.

- Молекулы вне вещества находятся в беспорядке, в несоответствии с их степенью окисления.
- Кремний в чистом виде имеет неопределенную степень окисления.
- Молекулы и единичные молекулы обратимо воздействуют сами по себе.
- Молекулы вне веществ фантастически отсутствуют.

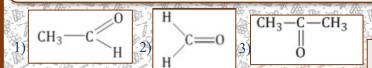
1000

• На составе тел нельзя найти их характер и на характере потерять состав.

100

• Характер тела свободен только от бракованной, но бесчисленной части и от хаоса разложения молекул в веществах.

АЛЬДЕГИДЫ И КЕТОНЫ


Альдегиды – это органические вещества,

Кетоны – это органические вещества,

Задание 1. Основные представители. Соотнеси структурную формулу с названием.

Общая формула адьдегидов:

Общая формула кетонов:

Задание 2. Заполни пропуски в таблицах.

Гомологичный ряд альдегидов

		Название	альдегида		
n	Формула альдегида	по международ- ной номенклатуре	тривиальное		
0		Метаналь	Муравьиный альдегид (формальдегид)		
1	CH³−C NH	Этаналь			
2	C_2H_5-C H		Пропионовый альдегид		
3	CH ₃ -(CH ₂) ₂ -C $\stackrel{/\!\!\!/}{\sim}_{H}$	Бутаналь			
4		Пентаналь	Валериановый альдегид		
5	CH ₃ -(CH ₂) ₄ -C \(\bigg ^{\text{O}}\)		Капроновый альдегид		

In . Usb Ter ...n. . Usb Ter ...n. . Usb Ter ...n. . Usb

3. Пропанон, диметилкетон, ацетон - _____

1. Метаналь, формальдегид, муравьиный альдегид - 2. Этаналь, ацетальдегид, уксусный альдегид - _____

Классификация альдегидов

Общая формула	Класс альдегидов	Примеры
	Предельные (насыщенные)	Н-С Н Метаналь
$(n \ge 0)$		СН ₃ —СН ₂ —С Пропаналь
$\begin{bmatrix} \mathbf{C}_n \mathbf{H}_{2n-1} - \mathbf{C} \mathbf{A} \end{bmatrix}$		СН ₂ =СН-С С Пропеналь (акролеин)
$(n \ge 2)$ $C_nH_{2n-3} - C H$ $(n \ge 2)$		НС≡С —С Пропиналь (пропарги- дегид)
,0	Ароматические	
Ar-C H		Бензойный альдегид
		альдегид (бензальдегид)

Задание 3. Изомерия альдегидов. Составь изомеры для бутаналя.

Задание 4. Дополни физические свойства альдегидов.

↓ Карбонильная группа — полярная группа, поэтому альдегиды и кетоны обладают более _____ температурой кипения, чем соответствующие углеводороды с той же молекулярной массой.

↓ Низшие альдегиды и кетоны смешиваются с _____ в любых пропорциях.

Низшие альдегиды имеют резкий запах, альдегиды C_4 - C_6 — неприятный запах, высшие альдегиды обладают запахом.

↓ Этаналь – легко кипящая растворимая в воде жидкость, высшие альдегиды – вещества.

Здесь ты можешь подробнее посмотреть про химические свойства альдегидов.

Задание 5. Химические свойства альдегидов. Допи	пши уравнения в тексте.
Реакции присоединения	
1. Гидрирование (восстановление)	
Гидрирование альдегидов приводит к образованию пер	вичных спиртов, гидрирование кетонов – ко вторичным.
CH_3 - C H $+ H_2 \xrightarrow{Ni, t^0}$	
$ \begin{array}{c} \text{CH}_3\text{-C-CH}_3 + \text{H}_2 \xrightarrow{\text{Ni, t}^0} \\ \text{O} \end{array} $	
Реакции окисления	
1. Реакция «серебряного зеркала» — окисление амми	пачным раствором оксида серебра (реактив Толленса)
Качественная реакция на альдегидную группу!	
CH_3 - $CH_$	
ацетальдегид	
Кетоны не вступают в эту реакцию.	
2. Окисление гидроксидом меди (II)	
Качественная реакция на альдегидную группу!	
$\begin{array}{c} \text{CH}_3\text{-CH-C} \\ \text{CH}_3 \end{array} + 2\text{Cu(OH)}_2 \xrightarrow{t^0} $	
изомасляный	
альдегид	
3. Окисление перманганатом калия	
5CH ₃ C _{5H} + 2KMnO ₄ + 3H ₂ SO ₄ →	
	о углекислого газа, потому что соответствующая ему
муравьиная кислота неустойчива к действию сильных с	
5H <mark>COH</mark> + 4KMnO₄ + 6H₂SO₄ →	
877. 0 356 977. 0 356 977. 0 356 97. 0 356 977. 0 356 977. 0 356 977. 0 356 977. 0	
Задание 6. Способы получения альдегидов. Допиц	пи уравнения в тексте.
SAN SAN SAN SAN SAN SAN SAN	BANGAN BANGAN BANGAN BANGE
1. Окисление спиртов	
При окислении первичных спиртов образуются альдеги	ды:
CH ₃ -CH ₂ -OH + CuO — этанол	
При окислении вторичных спиртов образуются кетоны	I:
CH₃-CH-CH₃ + CuO →	
ОН пропанол-2	Кетоны получают при гидратации других
2. Гидратация алкинов (реакция Кучерова)	гомологов ряда алкинов:
$HC \equiv CH + H_2O \xrightarrow{HgSO_4} \begin{bmatrix} H - C = C - H \end{bmatrix} \longrightarrow CH_3 - C - H$	$CH_3-C\equiv CH + H_2O \xrightarrow{HgSO_4} [CH_3-C=CH_2] \longrightarrow CH_3-C-CH_3$
ацетилен ОН ОН уксусный	пропин ОН О
виниловый спирт альдегид (енол) (этаналь)	енол (пропанон, ацетон)
3. Каталитическое дегидрирование спиртов	
Первичные спирты окисляются до альдегидов, а вторич	ные — до кетонов.
CH_3 - CH_2 - CH_2 - $OH \xrightarrow{Cu, 300^\circ C}$	
пропанол-1	
4. Пиролиз солей карбоновых кислот	
	ольный способ получения ацетона (наряду с фенолом)
СН+С	йший кетон – ацетон – получают кумольным методом

вместе с фенолом:

уксусный альдегид CH₃ 2[0] CH₃

Кумол (изопропилбензол) CH₃ OH H₂SO₄ CH₃

Гидропероксид изопропилбензола CH₃ OH+C=O CH₃

Фенол

Ацетон

Задание 7. Допиши применение альдегидов.

Альдегиды используются для получения пластмасс, лекарственн	ых препаратов, для синтеза _	
, а также в парфюмерии.		
Кетоны применяются в качестве растворителей в производстве п	ластмассы, искусственного _	, взрывчатых
веществ, косметики, парфюмерии и преп	аратов.	
В качестве растворителя ацетон используется в производстве	,и	, резины,
пластмасс, красителей, взрывчатых веществ, а также в фотографи	ии.	

Задание 8. Реши задания.

- 1. Вычислите, сколько граммов уксусного альдегида получится, при окислении 100 г 40%-ного водного раствора этилового спирта, если выход реакции составляет 75 %?
- 2. Напиши уравнения реакций, с помощью которых можно осуществить следующие превращения:

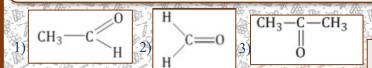
$$C_{2}H_{2} \xrightarrow{H_{2}O, Hg^{2+}} X_{1} \xrightarrow{H_{2}, Ni, t^{o}} X_{2} \xrightarrow{CuO, t^{o}} X_{1}$$

$$\xrightarrow{H_{2}SO_{4}(KOHU.)} X_{3} \xrightarrow{Br_{2}} X_{4} \xrightarrow{KOH} X_{5}$$

3. Составь синквейн на тему «Альдегиды».

Здесь ты можешь подробнее посмотреть про получение альдегидов

АЛЬДЕГИДЫ И КЕТОНЫ


Альдегиды – это органические вещества,

Кетоны – это органические вещества,

Задание 1. Основные представители. Соотнеси структурную формулу с названием.

Общая формула адьдегидов:

Общая формула кетонов:

Задание 2. Заполни пропуски в таблицах.

Гомологичный ряд альдегидов

		Название	альдегида		
n	Формула альдегида	по международ- ной номенклатуре	тривиальное		
0		Метаналь	Муравьиный альдегид (формальдегид)		
1	CH³−C NH	Этаналь			
2	C_2H_5-C H		Пропионовый альдегид		
3	CH ₃ -(CH ₂) ₂ -C $\stackrel{/\!\!\!/}{\sim}_{H}$	Бутаналь			
4		Пентаналь	Валериановый альдегид		
5	CH ₃ -(CH ₂) ₄ -C \(\bigg ^{\text{O}}\)		Капроновый альдегид		

In . Usb Ter ...n. . Usb Ter ...n. . Usb Ter ...n. . Usb

3. Пропанон, диметилкетон, ацетон - _____

1. Метаналь, формальдегид, муравьиный альдегид - 2. Этаналь, ацетальдегид, уксусный альдегид - _____

Классификация альдегидов

Общая формула	Класс альдегидов	Примеры
	Предельные (насыщенные)	Н-С Н Метаналь
$(n \ge 0)$		СН ₃ —СН ₂ —С Пропаналь
$\begin{bmatrix} \mathbf{C}_n \mathbf{H}_{2n-1} - \mathbf{C} \mathbf{A} \end{bmatrix}$		СН ₂ =СН-С С Пропеналь (акролеин)
$(n \ge 2)$ $C_nH_{2n-3} - C H$ $(n \ge 2)$		НС≡С —С Пропиналь (пропарги- дегид)
,0	Ароматические	
Ar-C H		Бензойный альдегид
		альдегид (бензальдегид)

Задание 3. Изомерия альдегидов. Составь изомеры для бутаналя.

Задание 4. Дополни физические свойства альдегидов.

↓ Карбонильная группа — полярная группа, поэтому альдегиды и кетоны обладают более _____ температурой кипения, чем соответствующие углеводороды с той же молекулярной массой.

↓ Низшие альдегиды и кетоны смешиваются с _____ в любых пропорциях.

Низшие альдегиды имеют резкий запах, альдегиды C_4 - C_6 — неприятный запах, высшие альдегиды обладают запахом.

↓ Этаналь – легко кипящая растворимая в воде жидкость, высшие альдегиды – вещества.

Здесь ты можешь подробнее посмотреть про химические свойства альдегидов.

Задание 5. Химические свойства альдегидов. Допи	пши уравнения в тексте.
Реакции присоединения	
1. Гидрирование (восстановление)	
Гидрирование альдегидов приводит к образованию пер	вичных спиртов, гидрирование кетонов – ко вторичным.
CH_3 - C H $+ H_2 \xrightarrow{Ni, t^0}$	
$ \begin{array}{c} \text{CH}_3\text{-C-CH}_3 + \text{H}_2 \xrightarrow{\text{Ni, t}^0} \\ \text{O} \end{array} $	
Реакции окисления	
1. Реакция «серебряного зеркала» — окисление амми	пачным раствором оксида серебра (реактив Толленса)
Качественная реакция на альдегидную группу!	
CH_3 - $CH_$	
ацетальдегид	
Кетоны не вступают в эту реакцию.	
2. Окисление гидроксидом меди (II)	
Качественная реакция на альдегидную группу!	
$\begin{array}{c} \text{CH}_3\text{-CH-C} \\ \text{CH}_3 \end{array} + 2\text{Cu(OH)}_2 \xrightarrow{t^0} $	
изомасляный	
альдегид	
3. Окисление перманганатом калия	
5CH ₃ C _{5H} + 2KMnO ₄ + 3H ₂ SO ₄ →	
	о углекислого газа, потому что соответствующая ему
муравьиная кислота неустойчива к действию сильных с	
5H <mark>COH</mark> + 4KMnO₄ + 6H₂SO₄ →	
877. 0 356 977. 0 356 977. 0 356 977. 0 356 977. 0 356 977. 0 356 977. 0 356 977. 0	
Задание 6. Способы получения альдегидов. Допиц	пи уравнения в тексте.
SAN SAN SAN SAN SAN SAN SAN	BANGAN BANGAN BANGAN BANGE
1. Окисление спиртов	
При окислении первичных спиртов образуются альдеги	ды:
CH ₃ -CH ₂ -OH + CuO — этанол	
При окислении вторичных спиртов образуются кетоны	I:
CH₃-CH-CH₃ + CuO →	
ОН пропанол-2	Кетоны получают при гидратации других
2. Гидратация алкинов (реакция Кучерова)	гомологов ряда алкинов:
$HC \equiv CH + H_2O \xrightarrow{HgSO_4} \begin{bmatrix} H - C = C - H \end{bmatrix} \longrightarrow CH_3 - C - H$	$CH_3-C\equiv CH + H_2O \xrightarrow{HgSO_4} [CH_3-C=CH_2] \longrightarrow CH_3-C-CH_3$
ацетилен ОН ОН уксусный	пропин ОН О
виниловый спирт альдегид (енол) (этаналь)	енол (пропанон, ацетон)
3. Каталитическое дегидрирование спиртов	
Первичные спирты окисляются до альдегидов, а вторич	ные — до кетонов.
CH_3 - CH_2 - CH_2 - $OH \xrightarrow{Cu, 300^\circ C}$	
пропанол-1	
4. Пиролиз солей карбоновых кислот	
	ольный способ получения ацетона (наряду с фенолом)
СН+С	йший кетон – ацетон – получают кумольным методом

вместе с фенолом:

уксусный альдегид CH₃ 2[0] CH₃

Кумол (изопропилбензол) CH₃ OH H₂SO₄ CH₃

Гидропероксид изопропилбензола CH₃ OH+C=O CH₃

Фенол

Ацетон

Задание 7. Допиши применение альдегидов.

Альдегиды используются для получения пластмасс, лекарственн	ых препаратов, для синтеза _	
, а также в парфюмерии.		
Кетоны применяются в качестве растворителей в производстве п	ластмассы, искусственного _	, взрывчатых
веществ, косметики, парфюмерии и преп	аратов.	
В качестве растворителя ацетон используется в производстве	,и	, резины,
пластмасс, красителей, взрывчатых веществ, а также в фотографи	ии.	

Задание 8. Реши задания.

- 1. Вычислите, сколько граммов уксусного альдегида получится, при окислении 100 г 40%-ного водного раствора этилового спирта, если выход реакции составляет 75 %?
- 2. Напиши уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$C_{2}H_{2} \xrightarrow{H_{2}O, Hg^{2+}} X_{1} \xrightarrow{H_{2}, Ni, t^{o}} X_{2} \xrightarrow{CuO, t^{o}} X_{1}$$

$$\xrightarrow{H_{2}SO_{4}(KOHU.)} X_{3} \xrightarrow{Br_{2}} X_{4} \xrightarrow{KOH} X_{5}$$

3. Составь синквейн на тему «Альдегиды».

Здесь ты можешь подробнее посмотреть про получение альдегидов

АЛКАДИЕНЫ

Алкадиены – это углеводороды

связями —

Задание 1. Заполни схему.

Классификация алкадиенов по взаимному расположению двойных связей в их молекулах

Диены с сопряженными связями –

Диены с изолированные связями –

Залание 2. Заполни пропуски в таблине.

задание	2.	запо	ЛНИ	проп	уск	и в	Та	ЮЛ	ице	
THE AVE OF	- N	AL A SOLT	V 31	and the	~ N	211	Colors.	V 19	200	Cort

C ₃ H ₄	СН ₂ =С=СН ₂ — пропадиен (аллен)
	CH ₂ =C=CH-CH ₃ — бутадиен-1,2
	СН ₂ =СН-СН=СН ₂ — бутадиен-1,3, или дивинил
C,H,	CH ₂ =C=CH-CH ₂ -CH ₃ - пентадиен-1,2
3336 363	— пентадиен-2,3
	CH ₂ =CH-CH=CH-CH ₃ -
	CH ₂ =CH-CH ₂ -CH=CH ₂ - пентадиен-1,4
	— 2-метилбутадиен-1,3, или изопрен
C ₄ H ₅ Cl	CH ₂ =C-CH=CH ₂ — или

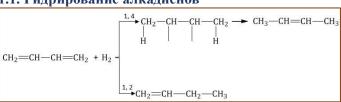
Задание 3. Напиши изомеры для пентадиена-1,3.

Задание 4. Дополни предложения по строению сопряжённых диенов.

- ✓ Атомы углерода в состоянии гибридизации
- ✓ Молекула плоская, валентный угол –
- ✓ В сопряженных диенах пи-электронные облака двойных связей перекрываются между собой и образуют

Задание 5. Физические свойства фенолов. Допиши предложения.

Здесь ты можешь подробнее посмотреть про химические и физические свойства


- ↓ 1,3-Бутадиен легко газ с неприятным запахом.
- lacktriangle Изопрен _____ с $T_{\text{кип}}$ 34 °C. Аллен (1,2-пропадиен) _____
- По сравнению с алканами и алкенами диены имеют значения показателя преломления.

я препомления

Задание 6. Химические свойства фенолов. Допиши уравнения в тексте.

1. Реакции присоединения

1.1. Гидрирование алкадиенов

При полном гидрировании дивинила образуется бутан:

$$CH_2 = CH - CH = CH_2 + 2H_2 \xrightarrow{Ni, t, p}$$

1.2. Галогенирование алкадиенов

При взаимодействии с алкадиенами красно-бурый раствор брома в воде (бромная вода) обесцвечивается.

Это качественная реакция на двойную связь.

$$CH_2=CH-CH=CH_2+Br_2 \rightarrow$$

При полном бромировании дивинила образуется 1,2,3,4-тетрабромбутан:

$$CH_2 = CH - CH = CH_2 + 2Br_2 \longrightarrow$$

1.3. Гидрогалогенирование алкадиенов

При присоединении хлороводорода к бутадиену-1,3 преимущественно образуется 1-хлорбутен-2:

$$CH_2 = CH - CH = CH_2 + HCl \longrightarrow$$

1.4. Полимеризация

Полимеризация алкадиенов протекает преимущественно по 1,4-механизму, при этом образуется полимер с кратными связями, называемый **каучуком.**

Продукт полимеризации дивинила (бутадиена) называется искусственным каучуком:

$$nCH_2 = CH - CH = CH_2 \longrightarrow (-CH_2 - CH = CH - CH_2 -)_n$$

При полимеризации изопрена образуется природный (натуральный) каучук:

2. Горение алкадиенов

$$C_4H_6 + O_2 \rightarrow$$

Задание 7. Способы получения алкадиенов. Допиши уравнения в тексте.

1. Дегидрирование алканов

$$CH_3$$
— CH_2 — CH_2 — CH_3 $Cr_2O_{3,} t$

2. Синтез Лебедева

$$2CH_3$$
— CH_2 — $OH \frac{Al_2O_{3,} MgO, ZnO}{450^{\circ}C}$

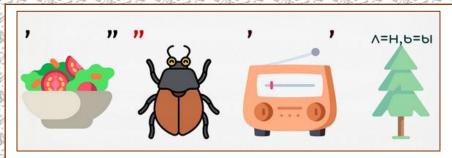
4. Дегидрогалогенирование дигалогеналканов

<u>Под действием спиртовых растворов</u> щелочей протекает отщепление атомов галогена и водорода и образуются вода, соль и алкадиен.

Задание 8.

Каучуки. Заполни пропуски в схеме.

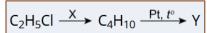
Сок дерева гевея («као чоу» — слезы дерева)	- 1	CH-CH ₂ -) _n
		CH-CH ₂ -) _n
(аналог на- турального каучука)	- 1	
Хлоропреновый	(),,
(-	-CH ₂ −CH=CH−	CH ₂ -CH ₂ -CH-) _n
	гевея (*као чоу* — слезы дерева) (аналог на- турального каучука) Хлоропреновый	гевея (*као чоу» — слезы СН, дерева) (-CH ₂ -CH= (аналог натурального каучука) Хлоропреновый (


Основная область применения алкадиенов это синтез каучуков.

Каучуки — природные или синтетические продукты полимеризации некоторых диеновых углеводородов с сопряженными связями. Важнейшими физическими свойствами каучуков являются эластичность (способность восстанавливать форму) и непроницаемость для воды и газов.

Задание 9. Реши ребусы и тест по теме.

10.08: 10.08


Какие из приведенных веществ не являются диенами? Число верных ответов может быть любым.

- 1) бутадиен
- 2) дивинил
- 3) изопрен
- 4) хлоропрен
- 5) полиэтилен

Какие из приведенных веществ не являются углеводородами? Число верных ответов может быть любым.

- 1) изопрен
- 2) этилен
- 3) дивинил
- 4) хлоропрен
- 5) винилхлорид

В заданной схеме превращений

Веществами Х и У являются соответственно

- 1) гидроксид калия
- 2) нитрид лития
- 3) натрий
- 4) изобутан
- 5) бутадиен-1,3

Первым укажите вещество X,

вторым - Ү

0

АЛКИНЫ

Алкины – это углеводороды,

Задание 1. Представители алкинов. Соотнеси название с формулой.

Задание 2. Изомерия алкинов. Составь изомеры для пентина-1.

- Этин (ацетилен) –
- 2. Пропин –
- 3. Бутин .
- 4. Пентин .

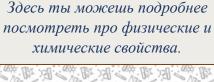
A $HC \equiv C - CH_2 - CH_3$

Б) HC = C - CH₂ - CH₂ - CH₃

ВНС≡СН

IDHC≡C-CH₃

Задание 3. Строение алкинов. Заполни пропуски.


10.08 10.08 10.08

- ✓ Атомы углерода в состоянии _____ гибридизации.
- ✓ Сигма –связи находятся на _____ линии, валентный угол ___
- ✓ Негибридизованные р-орбитали образуют
- ✓ Пи связи расположены

Задание 4. Физические свойства алкинов. Заполни пропуски.

- + (C₂-C₄) ______, (C₅-C₁₆) ______, начиная с С₁₇, _
- ♣ Растворимость _____ алкинов в воде несколько выше, чем алкенов и алканов, однако она все же очень мала.

Задание 5. Химические свойства алкинов. Допиши уравнения в тексте.

1. Реакции присоединения

1.1. Гидрирование

$$CH_3$$
— C = C — $CH_3 + 2H_2 \xrightarrow{Ni, t, p}$

1.2. Галогенирование алкинов

При взаимодействии с алкинами красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на тройную связь.

1.3. Гидрогалогенирование алкинов

$$CH \equiv CH + HCI \longrightarrow$$

$$CH \equiv C - CH_3 + HCI \longrightarrow$$

1.4. Гидратация алкинов (Реакция Кучерова)

Ацетилен образует альдегид!

Остальные гомологи ацетилена – кетон!

Например, при взаимодействии ацетилена с водой в присутствии сульфата ртути образуется уксусный альдегид.

CH
$$\equiv$$
CH + H₂O $\stackrel{\text{HgSO}_4}{\longrightarrow}$

Например, при гидратации пропина образуется пропанон (ацентон).

1.5. Тримеризация

Тримеризация ацетилена (присоединение трех молекул друг к другу) протекает под действием температуры, давления и в присутствии активированного угля с образованием бензола (реакция Зелинского):

2. Кислотные свойства алкинов

Алкины с тройной связью на конце молекулы взаимодействуют с активными металлами, гидридами, амидами металлов и т.д.

Например, ацетилен взаимодействует с натрием с образованием ацетиленида натрия.

Алкины с тройной связью на конце молекулы взаимодействуют с аммиачным раствором оксида серебра или аммиачным раствором хлорида меди (I) с образованием белого или красно-коричневого осадка соответственно. Это качественная реакция на алкины с тройной связью на конце молекулы. При этом образуются нерастворимые в воде ацетилениды серебра или меди (I):

HC≡CH + 2[Ag(NH₃)₂]OH →

Задание 6. Способы получения алкинов. Допиши уравнения в тексте.

1. Дегидрирование алканов

При дегидрировании алканов, содержащих от двух до трех атомов углерода в молекуле, образуются двойные и тройные связи.

2. Пиролиз метана

Пиролиз метана – это промышленный способ получения ацетилена.

3. Гидролиз карбида кальция

Лабораторный способ получения ацетилена – водный или кислотный гидролиз карбида кальция СаС2.

 $CaC_2 + 2H_2O = Ca(OH)_2 + C_2H_2$

4. Дегидрогалогенирование дигалогеналканов

Здесь ты можешь подробнее посмотреть про получение и применение алкинов.

Задание 7. Применение алкинов. Заполни пропуски в схеме.

Задание 8. Реши тест.

Ацетилен
Винилацетат
Винилацетат

Винилацетилен

Хлорвинил

- 1. Какова общая формула алкинов?
- C_nH_{2n+2}
- \bullet C_nH_{2n}
- \bullet C_nH_{2n-2}
- 2. Какова гибридизация атома углерода при метиновой группе?
- sp
- sp^2
- sp³
- 3. Какой вид изомерии отсутствует в алкинах?
- Геометрическая
- Оптическая
- Метамерия
- 4. Как можно получить ацетилен из метана?
- Полным пиролизом
- Неполным пиролизом
- Оба варианта возможны
- 5. Ацетиленид какого металла гидролизуется до ацетилена?
- Кальция
- Калия
- Алюминия
- 6. Как из дигалогенпроизводного получить алкин?
- Добавить спиртовую щелочь
- Добавить водную щелочь
- Добавить цинк
- 7. Какой карбокатион наиболее устойчив?
- Первичный
- Вторичный
- Третичный

- 8. Соль какого металла используется в реакции Кучерова?
- Ртути
- Серебра
- Натрия
- 9. Какой алкин в реакции Кучерова дает альдегид?
- Ацетилен
- Пропин
- Бутин-1
- 10. Какой катализатор используется в реакции тримеризации Бертло-Зелинского?
- C_{акт}
- Сажа
- Серная кислота

ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (АЛКАНЫ)

Алканы – это	УВ, в молекулах которых все атомы углерода находятся
в состоянии	гибридизации и связаны друг с другом только σ-связями.
	Общая формула

Задание 1. В приведенном ниже списке подчеркни формулы алканов.

 $C_{17}H_{36}$, C_4H_8 , $C_{12}H_{22}$, C_8H_{10} , C_7H_{16} , $C_{10}H_{18}$, $C_{15}H_{30}$, $C_{13}H_{28}$,

Задание 2. Номенклатура алканов.

3)

Задание 3. Гомологи и изомеры алканов.

1. Изомеры различаются:

- А) составом и строением молекул;
- Б) составом молекул и химическими свойствами;
- В) физическими свойствами и строением молекул;
- Г) составом молекул и физическими свойствами.

2. Изомером 3,4-диметилгексана является:

- а) 4,4,5-триметилгексан;
- б) 4,4-диметилгептан;
- в) 2,2,3-триметилпентан;
- г) 2-метил-3-этилгексан.

- 3. Гомологическая разность это группа атомов:
- a) CH;
- б) CH₂;
- в) CH₃;
- г) CH₄.
- 4. Отметьте формулы гомологов вещества $CH_3.CH(C_2H_5)CH_2.CH_3$:
- а) 3-метилпентан;
- б) 2-этилгексан;
- в) 2,2-диметилгексан;
- г) 3-метилгептан.

Задание 4. Напишите 3 изомера и два гомолога для 2-метилгептана.

Задание 5. Охарактеризуй
строение алканов, заполни
пропуски.

У алканов	- гибридизация
-----------	----------------

- Углы между связями –
- Длина связи составляет
- σ-связи, ковалентные _
- Молекула неполярная
- Форма –
- Цепочка углеродных атомов не линейна, а

Задание 6. Дополни физические свойства алканов.

растворяются в воде, Алканы – вещества,

растворимы неполярных растворителях.

Метан, этан, пропан и бутан –

Углеводороды C_5 — C_{17} — Высшие члены ряда (с C_{18}) –

Здесь ты можешь подробнее посмотреть про физические и химические свойства.

1008

Задание 7. Химические свойства алканов. Допиши уравнения в тексте.

Реакции замещения

1. Галогенирование

$$CH_4 + Cl_2 \longrightarrow$$

Взаимодействие гомологов метана с галогенами:

Правило: Замещение в первую очередь идет по третичным атомам углерода, затем – по вторичным, в последнюю очередь – по первичным.

$$CH_3$$
— CH_2 — CH_3 + Cl_2 \longrightarrow CH_3
 CH_3 — CH — CH_3 + Br_2 \longrightarrow

2. Реакция Коновалова – нитрование:

$$CH_3-CH_3 + HNO_3 \rightarrow$$

3. Изомеризация алканов:

Реакции окисления

1. Полное окисление – горение

 $CH_4 + 2O_2 \rightarrow \blacksquare$

2. Каталитическое окисление бутана

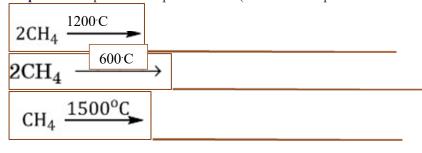
$$2CH_3-CH_2-CH_2-CH_3 + 5O_2 \rightarrow 4CH_3COOH + 2H_2O$$

Промышленный способ получения уксусной кислоты

Термические превращения

1. Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы с более короткой углеродной цепью и алкены.

Крекинг бывает термический и каталитический.


Термический крекинг протекает при сильном нагревании без доступа воздуха.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс

сопровождается реакциями изомеризации и дегидрирования

Специфические свойства метана

Пиролиз – термическое разложение (возможно образование этилена и ацетилена)

В промышленности:

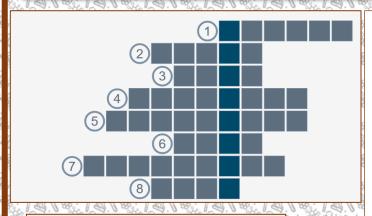
- А) Из природного сырья (Нефть, газ, горный воск)
- Б) Из простых веществ

 $C + 2H_2 \xrightarrow{Ni}$

В) Синтез из оксида углерода (II) и водорода

 $CO + 3H_2 \xrightarrow{Ni}$

В лаборатории:


А) Гидролиз карбида алюминия

Б) Реакция Дюма – взаимодействие солей карбоновых кислот с щелочами при сплавлении.

В) Реакция Вюрца – действие металлического натрия на галогеналканы

$$CH_3$$
— CH_2 — $Cl + 2Na + Cl$ — CH_2 — CH_3 —>

Задание 9. Реши кроссворд и получи по вертикали одно из названий предельного углеводорода.

Домашнее задание. Составь схему по применению алканов посмотрев видео.

- 1. Алкан, имеющий молекулярную формулу С₃Н₈.
- 2. Простейший представитель предельных углеводородов.
- 3. Французский химик, имя которого носит реакция получения углеводородов с более длинной углеродной цепью взаимодействием галогенопроизводных предельных углеводородов с металлическим.
- 4. Геометрическая фигура, которую напоминает пространственное строение молекулы метана.
- 5. Трихлорметан.
- 6. Название радикала С₂Н₅.
- 7. Наиболее характерный вид реакций для алканов.
- 8. Агрегатное состояние первых четырех представителей алканов при нормальных условиях.

Задание 1. Заполни таблицу.

Напиши эмпирическую или структурную формулу. $CH_2 = CH_2 - \text{этен (или этилен)}$ $CH_3 - CH = CH_2 - \text{пропен (или пропилен)}$ $C4H_8$

Задание 2. Назови данные вещества:

$$CH_{3}$$
 $H_{2}C = C - C - CH_{2} - CH_{3}$
 $CH_{3} CH_{3}$

1)

2)

3)

4)

5)

Задание 3. Напиши 3 изомера для гексена-1 и 3 изомера для 2-метилгептена-2.

Задание 4. Реши тест по цис-транс-изомерам. Обведи нужный ответ.

- А) Из предложенного перечня выберите два вещества, которые имеют пространственные цис-транс-изомеры:
- 1. 3-метилгексен-2;
- 2. 2,2-диметилпентан;
- 3. циклогексан;
- 4. пентен-2;
- 5. бутин-2.
- Б) Йз предложенного перечня выберите два вещества, у которых существуют цис-транс-изомеры:
- **1.** CH₂=CH-CH₂-CH₃;
- 2. CH₃-CH=CH-CH₃;
- $^{\mathbf{3.}}\;\mathrm{CH}_{3}\mathrm{-CH}\mathrm{=CH}_{2};$
- 4. CH₃-CH=CH-CH₂-CH₃;
- 5. CH₂=CH₂.
- В) Из предложенного перечня выберите два вещества, для которых возможна цис-транс-изомерия:
- 1. 2,3-диметилбутен-2
- 2. пентен-2
- 3. 2,3-диметилпентан
- 4. бутен-2
- 5. гексен-1
- 5. гексен-3

Задание 5. Заполни пропуски по строению алкенов. Атомы углерода в состоянии ✓ Три о-связи лежат в одной плоскости, угол между их осями составляет _____ ✓ Оставшиеся негибридизованными, _____ соседних атомов углерода образуют π -связь. ✓ Плоскость π -связи _____ плоскости, в которой лежат σ -связи. ✓ Длина двойной связи – около Задание 6. Дополни физические свойства. Здесь ты можешь подробнее посмотреть про физические и Они не растворимы в воде, но хорошо растворимы в неполярных химические свойства. растворителях, таких как _ Алкены с числом атомов углерода от 2 до 4 – газы, от C_5 до C_{17} – жидкости, далее идут Температуры кипения олефинов повышаются с увеличением содержания углерода примерно на 20–30 °C при увеличении цепи на _____ углеродный атом. Разветвление понижает температуру кипения: цис-изомеры обычно кипят при более высокой температуре, чем Задание 7. Химические свойства алкенов. Способы получения. Допиши уравнения в тексте. 1. Реакции присоединения 1.1. Гидрирование СН₃—СН=СН—СН₃ + Н₂ - $CH_2 = CH_2 + H_2 \stackrel{\mathit{\kappaam.,t}}{\longrightarrow}$ 1.2. Галогенирование алкенов Качественная реакция на двойную связь. $CH_2 = CH - CH_3 + Cl_2 \longrightarrow CH_2 - CH - CH_3$ $CH_2 = CH - CH_3 + Br_2 \longrightarrow CH_2 - CH - CH_3$ 1.3. Гидрогалогенирование алкенов $CH_2 = CH_2 + HBr \longrightarrow$ $CH_2 = CH - CH_3 + HBr \rightarrow$ Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи. $CH_2 = CH - CH_3 + HCl -$ 1.4. Гидратация $CH_2 = CH_2 + H_2O \xrightarrow{H^+}$ Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова. $CH_2 = CH - CH_3 + H_2O \xrightarrow{H^+}$ 1.5. Полимеризация Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера). $nCH_3-CH=-CH_2$ 2. Окисление алкенов 2.1. Каталитическое окисление

 $2CH_2 \longrightarrow CH_2 + O_2 \xrightarrow{PdCl_2, CuCl_2} 2CH_3 -$

2.3. Горение алкенов $C_3H_6 + O_2 \rightarrow$

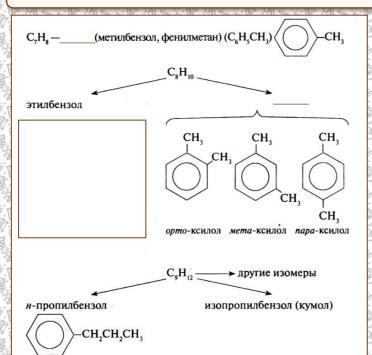
2.4. Изомеризация алкенов

$CH_2=CH-CH_2-CH_3 \rightarrow CH_3-CH=CH-CH_3$ ${ m CH_2 = CH - CH_2 - CH_3} \stackrel{{ m Kатализатор, \, t^\circ}}{-}$ 2.5. Использование сильных окислителей А) Мягкое окисление алкенов, получение диолов (реакция Вагнера) $3 H_3 C - CH - CH - CH_3 + 2 MnO_2 + 2 KOH$ $3 H_3 C - CH = CH - CH_3 + 2 KMnO_4 + 4H_2O \xrightarrow{0^{\circ}C}$ OH OH Обесцвечивание раствора перманганата калия – качественная реакция на двойную связь. Б) Жесткое окисление алкенов в кислой среде Жесткое окисление алкенов проводят сильными окислителями при нагревании. 5CH3-CH2CH-CH3 + 8KMnO4 + 12H2SO4 →10CH3COOH +12H2O + 8MnSO4+ 4K2SO4 Двойная связь при звене H_2 C=. Звено окисляется до углекислого газа и воды: $C_2H_5-CH_2+2KMnO_4+3H_2SO_4 \rightarrow C_2H_5COOH+CO_2+4H_2O+2MnSO_4+K_2SO_4$ Способы получения 1. Дегидрирование алканов CH_3 — CH_3 —Ni, tПри дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2: 2. Дегидрогалогенирование галогеналканов Галогеналканы взаимодействуют с щелочами <u>в спиртовом растворе.</u> Сн₃-Сн-сн-сн₃ + КОН (спирт.) → Сн₃-Сн=сн-сн₃ + КВг + Н₂О В таком случае выполняется правило Зайцева. Правило Зайцева: отщепление атома водорода при дегидрогалогенировании и дегидратации происходит преимущественно от наименее гидрогенизированного атома углерода. $CH_3CH_2Br + KOH_{(CПИРТ. p-p)}$ 3. Дегидратация спиртов 2 CH₃—CH₂—CH—CH₃ -4. Дегалогенирование дигалогеналканов (Реакция Реформатского) Как правило, для отщепления используют двухвалентные активные металлы — цинк или магний. CH3-CH-CH-CH3 + Zn → Br Br CH2-CH2 + Mg → 5. Гидрирование алкинов $CH \equiv C - CH_2 - CH_3 + H_2 \xrightarrow{Pd, t, p}$ Домашнее задание. Задание 8. Найди 10 слов. Задание 9. Ответь на вопрос. Посмотрев видео по применению и получению В состав феромона тревоги у муравьев алкенов, напиши их древоточцев входит углеводород. Каково применение. строение углеводорода, если при его Α ЮХ Я крекинге образуются пентан и пентен, а при его горении - 10 моль углекислого газа? Щ Щ Φ Й Щ И Р 0 Μ Α 0 С Ответ: Список слов: Д 1) МАРКОВНИКОВ Э С Γ Щ П П МЬ 2) ОЛЕФИНЫ 3) ПРОПИЛЕН 0 0 0 Ε ФИ Н 4) **ЭТЕН** 5) АЛКЕНЫ Ë Д 3 Щ Т ОЖ М Я 6) РЕФОРМАТОРСКИЙ Scan me! С Ε В Ь Φ Ч 7) ЦИКЛОПРОПАН Т E H E Б Ч Χ э ю с Д 8) ЗАЙЦЕВ K ю я т щ л т ж н Р Д Ч Ъ 9) ПРОПЕН Молодец! Так держать!

Ю 3 С Ш 3 Э Ь О Ё Г

ч Ш

10) ЗАМЕСТИТЕЛЬ


Я

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ (АРЕНЫ)

Ароматические УВ (арены) – это УВ,

Задание 1. Представители аренов. Заполни пропуски в схеме.

Задание 2. Напиши способы изображения бензола.

Задание 3. Физические свойства бензола. Дополни предложения.

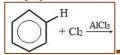
-CH=CH,

- Бензол при обычных условиях бесцветная ______
- Имеет характерный запах;

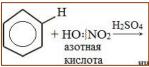
стирол (винилбензол, фенилэтен) (

- Не смешивается с
- **4** ______ растворитель;
- Сильно токсичен.

Задание 4. Химические свойства бензола. Допиши уравнения в тексте.

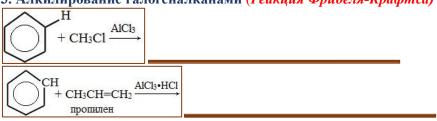

Реакции замещения в бензольном кольце

1. Галогенирование


H + Br-Br FeBr3

Важно! Реакция происходит с молекулярным бромом, а не с бромной водой. С бромной водой бензол не реагирует. Бензол не обесцвечивает бромную воду!

Хлорирование бензола



2. Нитрование

Образуется тяжелая желтоватая жидкость с запахом горького миндаля – нитробензол, поэтому данная реакция может быть качественной на бензол.

3. Алкилирование галогеналканами (Реакция Фриделя-Крафтса)

4. Сульфирование

Реакция легко проходит под действием «дымящей» серной кислоты (олеума).

Реакции присоединения

1.Гидрирование

2.Радикальное хлорирование

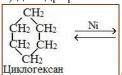
Реакции окисления

Бензол очень устойчив к окислителям. Он не окисляется даже под действием сильных окислителей ($KMnO_4$, $K_2Cr_2O_7$ и т.п.). Поэтому он часто используется как инертный растворитель при проведении реакций окисления других органических соединений.

1. Горение бензола

 $2C_6H_6 + 15O_2 \longrightarrow$

Задание 5. Способы получения. Допиши уравнения в тексте.


В промышленности

1.При коксовании (сухая перегонка) **каменного угля** образуется каменноугольная смола, из которой выделяют бензол, толуол, ксилолы, нафталин и многие другие органические соединения.

2. Ароматизация нефти

а) дегидроциклизация (дегидрирование и циклизация) алканов в присутствии катализатора.

б) дегидрирование циклоалканов и его гомологов:

HC CH CH HC CH HC CH HC CH HC CH HC CH Переходный комплекс

3. Тримеризация ацетилена

При пропускании ацетилена над активированным углем образуется бензол (реакция Зелинского)

Задание 6. Составь изомеры для гомолога бензола – C₉H₁₂. Задание 7. Химические свойства и способы получения гомологов бензола. Допиши уравнения в тексте. 1. Реакции замещения Галогенирование Гомологи бензола вступают в реакции замещения преимущественно в орто— и пара - положения + Cl₂ AlCl₃ При избытке галогена можно получить ди- и три-замешенные производные в соответствии с правилами ориентации: CH₃ AIC13 + 3Cl₂ Нитрование $-CH_3 + 3HNO_3 - \frac{H_2SO_4}{}$ Реакции присоединения Гидрирование -CH₃ + 3H₂ - Ni, t, p Замещение в боковой цепи Галогенирование по α-атому углерода в боковой цепи Толуол – бесцветная жидкость с характерным запахом, не растворимая в воде, хорошо αβ CH2-CH3

растворяется в органических растворителях. Толуол менее токсичен, чем бензол.

Дегидрирование метилциклогексана

Алкилирование по Фриделю-Крафтсу

Окисление толуола перманганатом калия в кислой среде Качественная реакция - обесцвечивание раствора перманганата калия

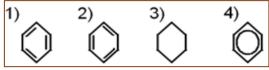
$$5H_3C$$
 \longrightarrow $+6KMnO_4 + 9H_2SO_4 \xrightarrow{t^o}$

ВЗРЫВЧАТЫЕ
ВЕЩЕСТВА

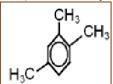
ТОЛУОЛ — РАСТВОРИТЕЛЬ
ДОБАВКА К МОТОРНОМУ
ТОПЛИВУ

П — КСИЛОЛ

П — КСИЛОЛ


П — КСИЛОЛ

П — КСИЛОЛ


ТОТИРОЛ

Задание 8. Выполни задания.

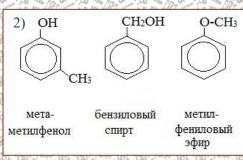
1) Недопустимое изображение молекулы бензола:

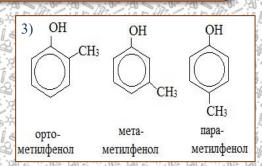
- 2) Как в реакцию замещения, так и в реакцию присоединения бензол вступает с:
- а) водородом
- б) хлором
- в) азотной кислотой
- г) кислородом
 - 3) Бензол не вступает в реакции:
- 1) хлорирования
- 2) нитрования
- 3) гидрирования
- 4) гидратации
 - 4) При взаимодействии водорода с бензолом образуется:
- 1) толуол
- 2) гексен
- 3) циклогексен
- 4) циклогексан
 - 5) При взаимодействии бензола с хлором при УФ-облучении образуется:
- 1) хлорбензол
- 2) 1,2-дихлорбензол
- 3) гексахлорциклогексан
- 4) 1,2-дихлоргексан
 - 6) Назовите углеводород

7) Укажите вещество Z в цепочке превращений:

 $egin{array}{cccc} {
m Na} & {
m Pt} & {
m Br}_2 \ {
m 1,6-дихлоргексан}
ightarrow & {
m X}
ightarrow & {
m Y}
ightarrow {
m Z} \end{array}$

ФЕНОЛЫ


Фенолы – это производные ароматических углеводородов, содержащие

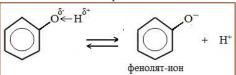


Задание 1. Заполни схему.

Задание 2. Соотнеси структурную формулу с названием изомерии.

- 1. Изомерия положения заместителей в бензольном кольце -_
- 2. Изомерия положения групп –ОН в многоатомных спиртах -_____
- 3. Межклассовая изомерия с ароматическими спиртами, простыми эфирами -____

Задание 3. Дополни физические свойства.


Наличие гидроксильной группы в молекулах фенолов делает их похожими на ______. Фенолы также способны образовывать сильные межмолекулярные водородные связи, что приводит к тому, что они имеют более высокую температуру кипения чем углеводороды с такой же молекулярной массой.
 Фенолы ______ в воде, но могут образовывать моногидраты, вероятно, за счет образования водородных связей с молекулами воды.
 Фенолы _ бесцветные вещества, однако они легко ______ на воздухе, поэтому большинство из них окрашены за счет наличия примеси ______.

Задание 4. Химические свойства фенолов. Допиши уравнения в тексте.

І. Реакции с участием гидроксильной группы.

Кислотные свойства

Фенолы в водных растворах диссоциируются по кислотному типу: на фенолятионы и ионы водорода:

В растворе фенола лакмус краснеет.

1) Взаимодействие с активными металлами с образованием фенолятов (сходство со спиртами)

 $2C_6H_5$ -OH + $2Na \rightarrow$

2) Взаимодействие со щелочами с образованием фенолятов (отличие от спиртов)

Здесь ты можешь подробнее посмотреть про химические свойства

$$C_6H_5$$
-OH + NaOH \leftrightarrow (водн. p-p)

Феноляты – соли слабой карболовой кислоты, разлагаются угольной кислотой:

$$C_6H_5$$
-ONa + H_2O + CO_2 \rightarrow

 C_6H_5 -OH + NaHCO₃ = реакция не идёт – прекрасно растворяясь в водных растворах щелочей, он фактически не растворяется в водном растворе гидрокарбоната натрия.

3) Образование сложных и простых эфиров

Сложные эфиры образуются при взаимодействии фенола с ангидридами или хлорангидридами карбоновых кислот:

II. Реакции, с участием бензольного кольца

Реакции замещения

1) Нитрование

При использовании концентрированной HNO₃ образуется 2,4,6-тринитрофенол (*пикриновая кислота*):

2) Галогенирование

Качественная реакция на фенол – взаимодействие с бромной водой!

Реакции присоединения

1) Гидрирование фенола

$$OH \longrightarrow +3H_2 \longrightarrow Ni, t^0 \longrightarrow$$

2) Конденсация с альдегидами

$$n\mathrm{C}_6\mathrm{H}_5$$
—OH $+$ $n\mathrm{H}$ —С $\stackrel{\mathrm{O}}{\longrightarrow}$ $\stackrel{\mathrm{H^+}_{\mathrm{HJH}}\,\mathrm{OH}^-}{\longrightarrow}$ $\stackrel{\mathrm{CH}_2}{\longrightarrow}$ $+$ $n\mathrm{H}_2\mathrm{O}.$ фенолформальдегидная смола

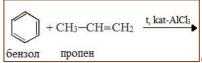
III. Реакция окисления

1) Горение (полное окисление)

$$C_6H_5$$
-OH + $7O_2 \rightarrow$

IV. Качественная реакция! - обнаружение фенола

Образование фиолетового окрашивания при добавлении раствора FeCl₃ служит качественной реакцией на фенол:

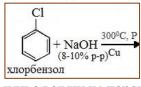


Задание 5. Способы получения фенолов. Допиши уравнения в тексте.

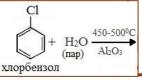
Получение фенола в промышленности

1. Кумольный способ

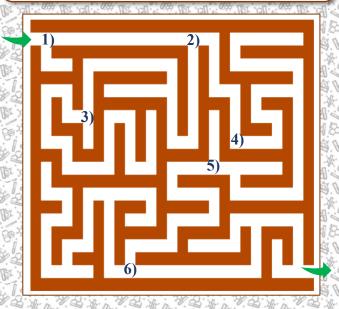
1 стадия – получение кумола

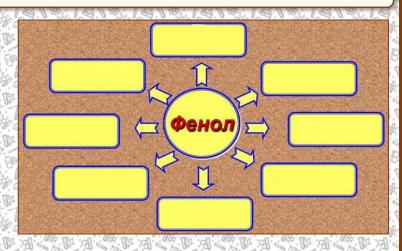


2. Из каменноугольной смолы (как побочный продукт – выход небольшой)


Каменноугольную смолу, содержащую в качестве одного из компонентов фенол, обрабатывают вначале раствором щелочи (образуются феноляты), а затем – кислотой:

 $C_6H_5ONa + H_2SO_4(pa36) \rightarrow$


3. Взаимодействие галогенпроизводных ароматических УВ со щелочами


или с водяным паром

Задание 6. Ответь на вопросы, чтобы выбраться из лабиринта.

Задание 7. Заполни схему по применению фенолов.

Молодец! Так держать!

2 стадия – каталитическое окисление

110-130°C

OH

фенол

H₃C-C-CH₃

OOH

H₃C-C-CH₃

гидроперекись кумола

ацетон

- 1) Какую функциональную группу содержит фенол?
- 2) Что образуется при взаимодействии фенола с бромной водой?
- 3) Какую формулу имеет фенол?
- 4) В какой промышленности используется фенол?
- 5) Какой цвет приобретает фенолфталеин в щелочной среде?
- 6) Какое вещество можно получить из фенола в присутствии азотной кислоты?

СПИРТЫ

Многоатомные спирты— это органические вещества,

Задание 1. Представители многоатомных спиртов. Соотнеси структурную формулу с названием.

Глицерин (пропантриол -1,2,3)

Этиленгликоль (этандиол -1,2)

Физические свойства:

↓ Этиленгликоль (ядовит) и глицерин – бесцветные, вязкие, сладкие на вкус жидкости, хорошо растворимы в воде.

Задание 2. Химические свойства многоатомных спиртов. Допиши уравнения в тексте.

Кислотные свойства

1. С щелочными металлами

HO-CH2-CH2-OH + 2Na →

2. С гидроксидом меди (II) — качественная реакция!

При взаимодействии многоатомного спирта с гидроксидом меди (II) в щелочной среде образуется **темно-синий** раствор (глицерат меди).

Основные свойства

1. С галогенводородными кислотами

2. Реакция этерификации (с органическими и неорганическими кислотами)

С карбоновыми кислотами глицерин образует сложные эфиры – жиры и масла.

$$\begin{array}{c} \text{CH}_2\text{--OH} & \text{CH}_2\text{--O-C-CH}_3 \\ \text{CH}\text{--OH} & + 3\text{CH}_3\text{COOH} & \xrightarrow{\text{H}^+} & \text{CH}\text{--O-C-CH}_3 \\ \text{CH}_2\text{--OH} & \text{CH}_2\text{--O-C-CH}_3 \end{array}$$

І. Получение двухатомных спиртов

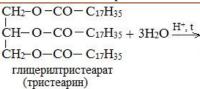
1.Щелочной гидролиз дигалогеналканов

При обработке дигалогенопроизводных углеводородов водным раствором щелочи также можно получить гликоли:

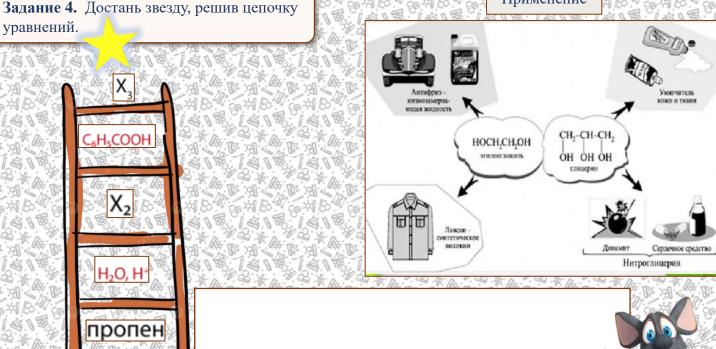
дихлорэтан

2.Окисление алкенов (реакция Вагнера)

Двухатомные спирты можно получить при «мягком» окислении алкенов водным или слабощелочным раствором перманганата калия:


$$3CH_3-CH=CH_2+2KMnO_4+4H_2O \longrightarrow$$
 пропилен

II. Получение трехатомных спиртов


1.Щелочной гидролиз природных жиров (омыление жиров (триглицеридов))

Гидролиз протекает в присутствии кислот или щелочей в качестве катализаторов, а также под действием ферментов:

2. Кислотный гидролиз животных жиров или растительных масел

КАРБОНОВЫЕ КИСЛОТЫ

Карбоновые кислоты – это производные УВ,

Задание 1. Представители крабоновых кислот. Напиши пропущенные формулы.

RANGE AND THE AND SECOND OF THE AND THE AND SECOND OF THE AND				
Предельные одноосновные карбоновые кислоты				
Тривиальное название	Систематическое название	Название соли и эфира	Формула кислоты	
Муравьиная	Метановая	Формиат (метаноат)		
Уксусная	Этановая	Ацетат (этаноат)		
Пропионовая	Пропановая	Пропионат (пропаноат)	CH ₃ CH ₂ COOH	
Масляная	Бутановая	Бутират (бутаноат)	CH ₃ (CH ₂) ₂ COOH	
Валериановая	Пентановая	Пентаноат	CH ₃ (CH ₂) ₃ COOH	
Капроновая	Гексановая	Гексаноат	CH ₃ (CH ₂) ₄ COOH	
Пальмитиновая	Гексадекановая	Пальмитат		
Стеариновая	Октадекановая	Стеарат		
	Непредельные одноосновн	ые карбоновые кислоты		
Тривиальное название	Систематическое название	Название соли и эфира	Формула кислоты	
Акриловая	Пропеновая	Акрилат	CH ₂ =CH-COOH	
Двухосновные карбоновые кислоты				
Тривиальное название Систематическое название Название соли и эфира Формула кислоты				
Щавелевая	Этандиовая	Оксалат		
Ароматические карбоновые кислоты				
Тривиальное название	Систематическое название	Название соли и эфира	Формула кислоты	
Бензойная	Фенилкарбоновая	Бензоат		
Фталевая	Бензол-1,2-дикарбоновая	Фталат		
	кислота			

Задание 2. Изомерия карбоновых кислот. Составь изомеры для С₂H₄O₂.

Задание 3. Физические свойства карбоновых кислот. Дополни предложения.

 ↓ Кислоты состава С₄-С₉ – с неприятным запахом, напоминающим запах пота, плохо растворимые в воде (разветвленные кислоты до С₁₃ — жидкости). Высшие карбоновые кислоты
(с С ₁₀) —, без запаха, нерастворимые в воде. ♣ Муравьиная, уксусная и пропионовая кислоты смешиваются с в любых соотношениях. С
увеличением молекулярной массы кислот растворимость Высшие карбоновые кислоты, например, пальмитиновая $C_{15}H_{31}COOH$ и стеариновая $C_{17}H_{35}COOH$, не растворимые в воде.
Задание 4. Химические свойства карбоновых кислот. Допиши уравнения в тексте.
І. Реакции с разрывом связи О-Н
1. Образование солей а) взаимодействие с активными металлами
2CH ₃ COOH + Zn →
Карбоновые кислоты реагируют с металлами, стоящими в ряду напряжений до водорода.
б) взаимодействие с основаниями (реакция нейтрализации)
$2CH_3COOH + Ca(OH)_2 \rightarrow$
в) взаимодействие с основными и амофтерными оксидами
2CH₃COOH + CuO →
г) взаимодействие с солями более слабых кислот
$2CH_3COOH + Na_2CO_3 \rightarrow$
Свойства солей карбоновых кислот
1) Взаимодействие с сильными кислотами
CH ₃ -COONa + HCl →
Качественная реакция на ацетат-ион CH ₃ COO ⁻ ! Запах уксусной кислоты. 2) Электролиз солей активных металлов (реакция Кольбе)
2CH ₃ COONa + 2H ₂ O эл. ток
2CH3COONа + 2H2O — → ацетат натрия
3) Пиролиз солей карбоновых кислот
$(CH_3COO)_2Ca \xrightarrow{t^0}$
тв. ацетат кальция ⁻
+0
$(C_2H_5COO)_2Ba \xrightarrow{\Gamma B}$
пропионат бария
4) Декарбоксилирование солей щелочных металлов (реакция Дюма)
$CH_3\text{-COONa} + NaOH \xrightarrow{\tau}_{\text{сплавл.}}$
$CH_3\text{-}CH_2\text{-}COONa + NaOH \xrightarrow{t^0}_{\text{(сгилавл.)}}$
(IB.) (IB.)
II. Реакции с разрывом связи С-О1. Взаимодействие со спиртами с образованием сложных эфиров (реакция этерификации)
$CH_{3}-C \xrightarrow{H_{2}SO_{4}, t^{0}} CH_{3}-C \xrightarrow{H_{2}SO_{4}, t^{0}} CH_{3}-C \xrightarrow{C} +H_{2}O$
ОН О¹8-С₂Н₅ уксусная этилацетат кислота (уксусноэтиловый эфир)
2. Взаимодействие с аммиаком с образованием амидов
$CH_3COOH + NH_3 \rightarrow CH_3COONH_4 \rightarrow$
уксусная ацетат аммония кислота

BY AND BY THE AND BY T
 III. Реакции с разрывом связи С-Н у α-углеродного атома (реакции с участием радикала) 1. Реакции замещения (с галогенами) Карбоновые кислоты взаимодействуют с галогенами в присутствии красного фосфора (реакция Геля-Фольгарда- Зелинского):
$ \begin{array}{c} \beta \alpha \\ CH_3\text{-}CH_2\text{-}COOH + Cl_2 \xrightarrow{P \text{ kpach.}} \end{array} $
Задание 5. Способы получения. Допиши уравнения в тексте.
1. Окисление первичных спиртов и альдегидов под действием различных окислителей
Окисление спиртов
В качестве окислителей применяют $KMnO_4$ и $K_2Cr_2O_7$.
$5C_2H_5OH + 4KMnO_4 + 6H_2SO_4 \rightarrow$ этанол
В промышленности
1. Выделяют из природных продуктов (жиров, восков, эфирных и растительных масел)
2. Окисление алканов кислородом воздуха (в присутствии катализаторов – солей марганца или при нагревании
под давлением)
2CH ₃ -CH ₂ -CH ₃ + 5O ₂ → t,kat,p <i>н</i> -бутан
3. Окисление алкенов и алкинов
$CH_3\text{-}CH = CH_2 + 4[O] \xrightarrow{t,kat}$
4. Окисление гомологов бензола (получение бензойной кислоты)
5C ₆ H ₅ -CH ₃ + 6KMnO ₄ + 9H ₂ SO ₄ → толуол
В лаборатории
1. Гидролиз сложных эфиров
При кислотном гидролизе получают карбоновые кислоты и спирты (реакция обратная этерификации):
СH ₃ CH ₂ -С + H ₂ O H ⁺ , Т > метилпропионат
2. Из солей карбоновых кислот
R-COONa + HCl →
: 61 A: 61
Задание 6. Посмотри видео и напиши применение карбоновых кислот.

Задание 7. Качественные реакции муравьиной кислоты на альдегиды. Допиши уравнения.

б) реакция с гидроксидом меди (II): $H-C-OH + 2Cu(OH)_2 \xrightarrow{t^{\circ}}$	а) реакция «серебряного зерко U H H C OH Ag_2O NH_4OH t°	ала»:
	0	ци (II):

Задание 8. Реши цепочки превращений.

1.

ацетат калия
$$\longrightarrow$$
 X₁ \longrightarrow этилен \longrightarrow X₂ \longrightarrow дивинил \longrightarrow X₃ $\xrightarrow{O_2$, кат. \longrightarrow CH₃COOH $\xrightarrow{\text{Ba}(\text{OH})_2}$ X₄ $\xrightarrow{t^{\circ}\text{C}}$ X₅

2

$$X_1 \xrightarrow{H_2O}$$
 метан $\longrightarrow C_2H_2 \longrightarrow$ оксалат калия \longrightarrow щавелевая кислота $\xrightarrow{H_2SO_4, \, t^{\circ}C} X_2 \longrightarrow X_3 \longrightarrow$ HCOOH

3.

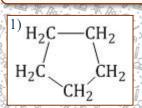
4-хлортолуол
$$\longrightarrow$$
 CH_3 $\xrightarrow{\text{1 моль Cl}_2, \text{ FeCl}_3}$ X_1 $\xrightarrow{\text{KMnO}_4 \text{ (изб.)}, \text{ H}_2\text{SO}_4, t^{\circ}\text{C}}$ X_2 $\xrightarrow{\text{NaHCO}_3 \text{ (изб.)}}$ X_3 $\xrightarrow{\text{CH}_3\text{I} \text{ (изб.)}}$ X_4

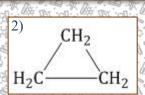
4

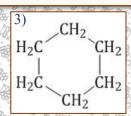
1,1-дибромпропан
$$\to X_1 \xrightarrow{K_2 \text{Cr}_2 \text{O}_7, \text{H}_2 \text{SO}_4}$$
 пропановая к-та $\xrightarrow{\text{CI}_2, \text{P}_{(\text{красн.})}} X_2 \xrightarrow{\text{NaHCO}_3} X_3 \xrightarrow{\text{CH}_3 - \text{CH}_2 - \text{I}} X_4$

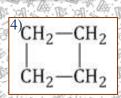
$$CH_{3}-CH-CH_{2}-C \stackrel{O}{\bigcirc OH} \stackrel{KOH}{\longrightarrow} X_{1} \xrightarrow{\longrightarrow} X_{2} \stackrel{Cr_{2}O_{3}, t^{\circ}C}{\longrightarrow} H_{3}C \stackrel{CH_{3}}{\longrightarrow} \stackrel{KMnO_{4}, H_{2}SO_{4}}{\longrightarrow} X_{3} \xrightarrow{\longrightarrow} лавсан$$

$$CH_{3}-CH-CH_{2}-C \stackrel{O}{\bigcirc}OH \stackrel{CI_{2}, P_{(красн.)}}{\longrightarrow} X_{4} \xrightarrow{KOH, C_{2}H_{5}OH} X_{5}$$


Циклоалканы — это насыщенные углеводороды, атомы углерода которых $\frac{\cdot}{\cdot}$ Общая формула таких веществ — $\frac{\cdot}{\cdot}$ Простейший член ряда — **циклопропан С**₃**H**₆.


Общая формула таких во Простейший член ряда -


Классификация циклоалканов


Задание 1. Заполни схему.

Задание 2. Соотнеси структурную формулу с названием циклоалкана.

Циклопроапан -____. Циклобутан -____. Циклопентан -___. Циклогексан -____.

Задание 3. Реши тест по изомерии циклоалканов.

Задание 4. Дополни физические свойства.

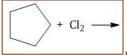
- **А)** Выберите виды изомерии, характерные для класса циклоалканы:
- Геометрическая изомерия
- Структурная изомерия
- Кольчато-цепная изомерия
- Б) Изомером метилциклогексана является:
- Метилбензол
- Гептин-1
- Гексан
- Гептен-1
- В) Пентен-2 и циклопентан это:
- Одно и то же вещество
- Структурные изомеры
- Гомологи
- Пространственные изомеры

- ★ С увеличением размера цикла, температуры кипения и плавления
- **↓** Циклоалканы $C_3 C_4$ представляют собой ______.
- + C₅ C₁₆ ______.
- **↓** С₁₇ и более ______ вещества
- ♣ Растворимость циклических алканов в воде очень ______.

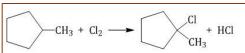
Задание 5. Химические свойства циклоалканов. Допиши уравнения в тексте.

1. Реакции присоединения к циклоалканам 1.1. Гидрирование циклоалканов

Циклогексан и циклоалканы с большим число атомов углерода в цикле с водородом не реагируют.

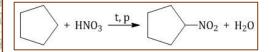

1.2. Галогенирование циклоалканов

1.3. Гидрогалогенирование


Присоединение галогеноводородов к гомологам циклопропана с заместителями у трехатомного цикла (метилциклопропан и др.) *происходит по правилу Марковникова*.

2. Реакции замещения

2.1. Галогенирование

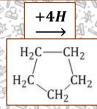


При хлорировании метилциклопентана замещение преимущественно протекает у третичного атома углерода:

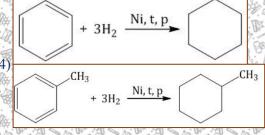
про физические и химические свойства

2.2. Нитрование циклоалканов

2.3. Горение циклоалканов


$$C_5H_{10} + O_2 \rightarrow \underline{\hspace{1cm}} + Q$$

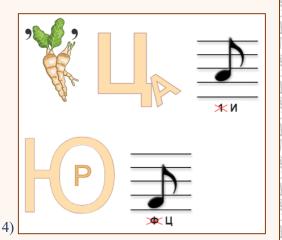
Здесь ты можешь подробнее посмотреть


Задание 6. Способы получения циклоалканов. Соотнеси название с уравнием.

$$CH_2-CH_2-CO$$
 Са $CACO_3$ + C

$$\begin{array}{c|c}
CH_2 & CH_2Br \\
 & + Zn \longrightarrow \\
 & CH_2 & CH_2Br
\end{array}$$

2) CH₃—CH₂—CH₂—CH₂—CH₂—CH₃
$$\xrightarrow{\text{Cr}_2\text{O}_3, t}$$
 + 4H₂


- А) Дегидрирование алканов _
- Б) Гидрирование бензола и его гомологов -
- В) Дегалогенирование дигалогеналканов -
- Г) Сухая перегонка солей двухосновных карбоновых кислот -
- Д) Реакция Вюрца

Задание 7. Разгадай ребусы.

1)

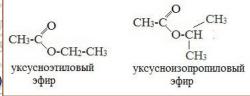
2)

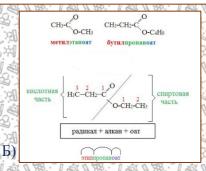
3)

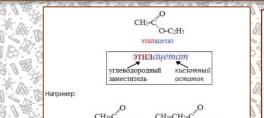
эх гид

Домашнее задание. Прочитай статью и напиши применение циклоалканов

5)

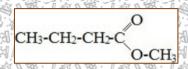



0


СЛОЖНЫЕ ЭФИРЫ

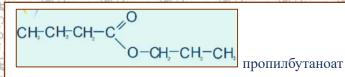
Сложные эфиры – это вещества,

Задание 1. Подпиши какие по какой номенклатуре даны названия на рисунках.



- A) –
- Б) –
- B) –
- Γ) –

Задание 2. Назови вещества.


$$H_3C-C''$$
 $O-C_2H_5$

Представители:

ОСН₃-СООСН₃
метилацетат
(метиловый эфир уксусной кислоты, уксуснометиловый эфир,

Задание 3. Изомерия сложных эфиров. Составь изомеры для следующего вещества.

Здесь ты можешь подробнее посмотреть про сложные эфиры.

Задание 4. Физические свойства сложных эфиров. Заполни пропуски.

4	Сложные эфиры низших и	сарбоновых кислот и спиртов пре	едставляют собой,
МНОГИ	е из которых обладают прия	гным цветочным или фруктовым за	ппахом.
4	Они	_ в воде и имеют более	_ температуры кипения, чем изомерные им
карбо	новые кислоты. Это связанно	с тем, что в молекулах сложных э	фиров отсутствуют межмолекулярные
водор	одные связи.		
4	Приятный аромат цветов, п.	подов, ягод в значительной степени	обусловлен присутствием в них тех или
иных			
4	Сложные эфиры высших жи	ирных кислот и спиртов –	вещества, не имеют запаха, в воде
	, хорошо раст	воряются в	·

Задание 5. Химические свойства сложных эфиров. Допиши уравнения в тексте.

1. Реакция гидролиза (омыления)

$$H - C$$
 $O + H_2O \stackrel{H^{\uparrow}, t}{\longleftrightarrow}$ метилформиат

$$CH_3$$
— C + NaOH \xrightarrow{t} этилацетат

2. Реакция гидрирования (восстановления)

Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

$$CH_3-C$$
 — C_2H_5 + $2H_2 \xrightarrow{\text{кат.}}$ 9 тилацетат

3. Реакция образования амидов

Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:

4. Реакция горения

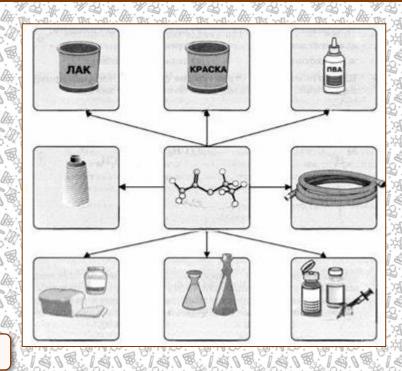
Задание 6. Способы получения сложных эфиров. Допиши уравнения в тексте.

1. Этерификация карбоновых кислот спиртами

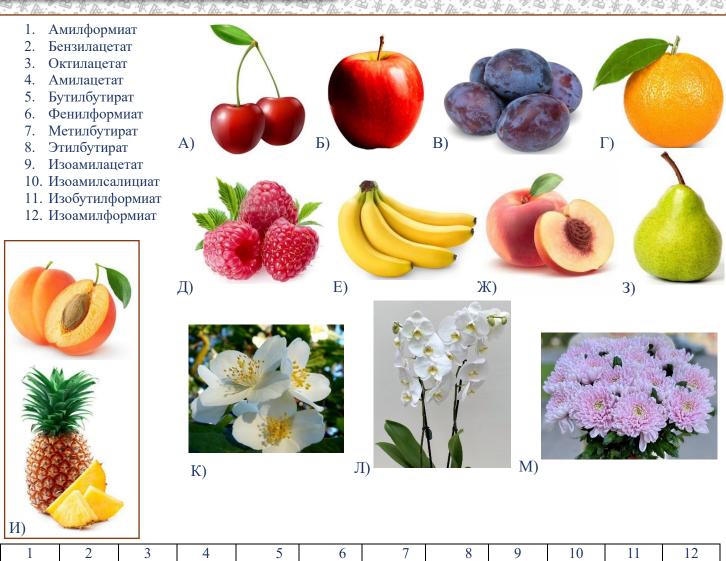
Карбоновые кислоты вступают в реакции с одноатомными и многоатомными спиртами с образованием **сложных** эфиров.

2. Соли карбоновых кислот с галогеналканами

При взаимодействии солей карбоновых кислот с галогеналканами образуются сложные эфиры.


CH_3 - $COONa + CH_3$ -Cl = -

3. Алкилирование солей карбоновых кислот:



Задание 8. Соотнеси вещество с его запахом.

000

УГЛЕВОДЫ

Углеводы – это обширный класс природных соединений,

Простые углеводы (моносахариды) — это простейшие углеводы, не гидролизующиеся с образованием более простых углеводов.

Сложные углеводы — это углеводы, молекулы которых состоят из двух или большего числа остатков моносахаридов и разлагаются на эти моносахариды при гидролизе.

Задание 1. Допиши схему по классификации углеводов «по числу структурных звеньев».

Моносахариды – содержат

структурное звено

Глюкоза – ___

Фруктоза –

Дезоксирибоза –

Рибоза –

Олигосахариды — содержат от __ до ___ структурных звеньев (дисахариды, трисахариды и др.).

Углеводы

Полисахариды – содержат
структурное звено
Целлюлоза –
Крахмал –

Задание 2. Допиши физические свойства моносахаридов и дисахаридов.

- Моносахариды представляют собой бесцветные ______ вещества, сладкие на вкус
 ↓ ______ растворимые в воде
 ↓ ______ в эфире
 ↓ _____ растворимые в спирте
 ↓ Сладость моносахаридов ______. Например, фруктоза слаще глюкозы в три раза.
- сахароподобные
 углеводы

 ↓ ____
 кристаллические
 вещества

 ↓ ___
 растворимые в воде

 ↓ Имеют сладкий вкус

Дисахариды –

типичные

Задание 3. Химические свойства моносахаридов. Допиши уравнения в тексте.

I. Реакции с участием альдегидной группы глюкозы (т.е. свойства глюкозы как альдегида)

1. Восстановление (гидрирование) с образованием многоатомного спирта:

В ходе этой реакции карбонильная группа восстанавливается и образуется новая спиртовая группа

2. Окисление

Глюкоза легко окисляется. В зависимости от характера окислителей получаются различные продукты.

1) Окисление под действием слабых (мягких) окислителей с образованием глюконовой кислоты.

К числу таких реакций относятся качественные реакции на глюкозу как альдегид: реакция с аммиачным раствором оксида серебра (I) Ag_2O (реакция «серебряного зеркала») и реакция с гидроксидом меди (II) $Cu(OH)_2$ в щелочной среде при нагревании:

```
H, C, O

H-C-OH

HO-C-H

H-C-OH

CH<sub>2</sub>OH

H-C-OH

H-C-OH

H-C-OH

H-C-OH

H-C-OH

H-C-OH

H-C-OH

H-C-OH

CH<sub>2</sub>OH

H-C-OH
```

- II. Реакции глюкозы с участием гидроксильных групп (т. е. свойства глюкозы как многоатомного спирта)
- 1. **Взаимодействие с Си(ОН) 2 на холоде** с образованием глюконата меди (II) (качественная реакция на глюкозу как многоатомный спирт):

III. Брожение (ферментация) моносахаридов

Брожение — это расщепление моносахаридов под влиянием биологических катализаторов — ферментов, вырабатываемых микроорганизмами.

1. Спиртовое брожение

```
{f C_6 H_{12} O_6} \xrightarrow{{f \Phi e p m e h T b}} {f D n b k o s a}
```

2. Маслянокислое брожение.

```
\mathrm{C_6H_{12}O_6} \xrightarrow{\mathrm{ферменты}}
```

3. Молочнокислое брожение

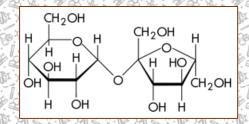
$$\mathbf{C_6H_{12}O_6} \xrightarrow{\boldsymbol{\Phi}\mathbf{e}\mathbf{p}\mathbf{M}\mathbf{e}\mathbf{H}\mathbf{T}\mathbf{M}}$$

4. Лимоннокислое брожение

$$C_6H_{12}O_6+3[O] \xrightarrow{\text{ферменты}}$$

Задание 4. Применение глюкозы. Заполни пропуски в схеме.

В промышленности глюкозу получают гидролизом крахмала и целлюлозы.


Сложные углеводы

Олигосахариды — низкомолекулярные сахароподобные углеводы, содержащие от двух до десяти остатков моносахаридов (обычно гексоз), соединенных гликозидными связями. Простейшими из них являются дисахариды.

Дисахариды — продукты конденсации двух моносахаридов.

Важнейшие природные представители: сахароза (тростниковый или свекловичный сахар), мальтоза (солодовый сахар), лактоза (молочный сахар), целлобиоза.

Все они имеют одну и ту же эмпирическую формулу $C_{12}H_{22}O_{11}$, т. е. являются изомерами.

Задание 5. Химические свойства дисахаридов. Допиши уравнения в тексте.

Дисахариды

Кристаллы сахарозы

Восстанавливающие дисахриды — это дисахариды, в молекулах которых сохраняется полуацетальный гидроксил (мальтоза, лактоза, целлобиоза), в растворах частично превращаются в открытые альдегидные формы и вступают в реакции, характерные для

Невосстанавливающие дисахариды — это дисахариды, в молекулах которых нет полуацетального гидроксила (сахароза) и которые не могут переходить в открытые карбонильные формы.

Все дисахариды являются многоатомными спиртами, для них характерны свойства многоатомных спиртов (образование простых и сложных эфиров), они дают **качественную реакцию** на многоатомные спирты (взаимодействие с Cu(OH)₂):

Все дисахариды гидролизуются с образованием моносахаридов:

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{t^\circ, H}$$
 Сахароза

альдегидов, в частности в реакцию

«серебряного зеркала».

Состав дисахаридов. Заполни пропуски в таблице.

Задание 6. Свойства моно- и дисахаридов. Поставь «+» если нужный углевод вступает в эту реакцию и «-» если нет.

Сахароза	а-глюкоза + β-фруктоза
Мальтоза	
Целлобиоза	
Лактоза	

	Реакция серебряного	Взаимодействие с	Взаимодействие с
	зеркала	Cu(OH) ₂ , <u>при нагревании</u>	Си(ОН)2, без нагревания
Мальтоза			
Лактоза			
Целлобиоза			
Сахароза			
Фруктоза			
Глюкоза			
Рибоза			
Дезоксирибоза			1

Задание 7. Полисахариды. Заполни пропуски в таблице.

Полисахариды — высокомолекулярные несахароподобные углеводы, содержащие от десяти до сотен тысяч остатков моносахаридов (обычно гексоз), связанных гликозидными связями.
Важнейшие природные представители: крахмал, гликоген, целлюлоза. Это природные полимеры (ВМС),

мономером которых является глюкоза. Их общая эмпирическая формула ($C_6H_{10}O_5$)**п.**

Характеристика	Полисахарид	
	Крахмал	Целлюлоза
Молекулярная формула		
Структурное звено		Остаток циклической молекулы b - глюкозы.
Структура макромолекулы	Линейная (амилоза) и разветвленная (амилопектин). В крахмале на долю амилозы приходится 10–20 %, а на долю амилопектина – 80–90 %	
Степень полимеризации	Степень полимеризации от нескольких сотен до нескольких тысяч.	Степень полимеризации от нескольких тысяч до нескольких десятков тысяч.
Нахождение в природе и биологические функции		Обязательный элемент клеточной оболочки растений, выполняющий строительную, конструкционную функцию.
Физические свойства	Белый аморфный порошок, не растворяется в холодной воде, в горячей воде разбухает и образует коллоидный раствор – крахмальный клейстер.	
Химические свойства	 Образование глюкозы в результате полного гидролиза: (С₆ H₁₀O₅)_n + nH₂O → Образование сложных эфиров за счет Качественная реакция с йодом − окрашивание 	 Образование глюкозы в результате полного гидролиза: (С₆ H₁₀O₅)_n + nH₂O →

Задание 8. Реши задания.

- 1. Известно, что избыточное потребление сладостей способствует развитию кариеса. Как это можно объяснить с точки зрения химического разрушения зубной эмали одной из серьезных причин кариеса? Можете ли вы предложить свой способ защиты зубов, позволяющий любителям сладостей потреблять их без ограничения?
- 2. Для строительства и ремонта деревянных домов, бань, колодцев требуется древесина, которую нередко приходится покупать в виде бревен. При этом важно определить, в какое время года были спилены деревья. Летняя древесина плохой материал, рыхлый, в нем много соков, впоследствии такая древесина легко загнивает. Зимний лес стойкий и крепкий. Определить качество древесины и время ее заготовки по цвету годовых колец невозможно. Но это нетрудно сделать с помощью обычной настойки йода достаточно облить ею спил дерева. По тому, в какой цвет окрасится спил под действием йода, можно определить, зимой или летом было спилено дерево. Попробуйте объяснить, на чем основан этот метод.
- 3. Для профилактики и лечения диспепсии (расстройства пищеварения) поросят очень эффективен йодкрахмальный препарат, который легко приготовить в домашних условиях. Для этого нужно 10 г крахмала размешать в 50 мл холодной воды и влить в 450 мл кипящей воды, после охлаждения добавить 10 мл 5% ной спиртовой настойки йода. Этот раствор интенсивно-синего цвета, в котором йод проявляет сильное антибактериальное действие и при этом не раздражает слизистые оболочки органов пищеварения. Рассчитайте, сколько вам потребуется крахмала и настойки йода, если надо провести 12-дневный профилактический курс пяти поросятам, а ежедневная доля препарата 10 мл на одного поросенка.

ЖИРЫ

Жиры — это смесь _____ **Общая формула жира:**

Задание 1. Наиболее важные ВКК, входящие в состав жиров. Заполни пропуски в схеме.

Жирные (высшие) кислоты		
Предельные кислоты	Непредельные кислоты	
Масляная кислота	га Олеиновая кислота	
	(содержит одну двойную связь в радикале)	
	CH_3 — $(CH_2)_7$ — $CH = CH$ — $(CH_2)_7$ — $COOH$	
кислота С15Н31 — СООН	Линолевая кислота	
	(две двойные связи в радикале)	
Стеариновая кислота C ₁₇ H ₃₅ — СООН	кислота C ₁₇ H ₂₉ COOH	
	(три двойные связи в радикале)	
	CH ₃ CH ₂ CH=CHCH ₂ CH=CHCH ₂ CH=CH(CH ₂) ₄ COOH	

Задание 2. Номенклатура жиров. Назови вещество.

$$\begin{array}{c} \text{CH}_{2}\text{--}\text{O} \\ \text{CH}_{2}\text{--}\text{O} \\ -\text{C}\text{--}\text{C}_{15}\text{H}_{31} \\ \\ \text{CH}\text{--}\text{O} \\ -\text{C}\text{--}\text{C}\text{--}\text{C}_{15}\text{H}_{31} \\ \\ \text{CH}_{2}\text{--}\text{O} \\ -\text{C}\text{--}\text{C}\text{--}\text{C}_{15}\text{H}_{31} \\ \end{array}$$

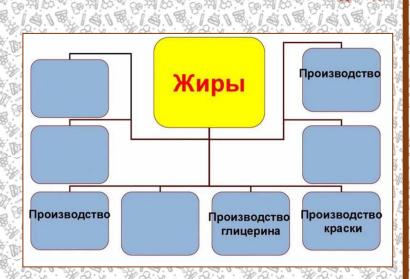
Задание 3. Физические свойства жиров. Заполни пропуски.

Животные жиры — предельные	Растительные жиры (масла) — непредельные	
Твёрдые, образованы кислотами –	Жидкие, образованы кислотами –	
стеариновой и пальмитиновой.	олеиновой, линолевой и другими.	
Все животные жиры, кроме рыбьего –	Все растительные жиры, кроме пальмового масла –	
	·	

Задание 4. Химические свойства жиров. Допиши уравнения в тексте.

1. Гидролиз (омыление) жиров

1.1. Кислотный гидролиз


Под действием кислот жиры гидролизуются до глицерина и карбоновых кислот, которых входили в молекулу жира.

1.2. Щелочной гидролиз — омыление жиров

При щелочном гидролизе жиров образуется глицерин и соли карбоновых кислот, входивших в состав жира.

- *Мыла* натриевые или калиевые соли высших карбоновых кислот
- Натриевые соли являются основным компонентом твердого мыла, калиевые соли жидкого мыла.
- Реакция присоединения характерны для жиров, в составе которых есть непредельные кислоты.
- Могут взаимодействовать с водородом и галогенами.

Задание 5. Применение жиров. Заполни пропуски в схеме.

Задание 6. Реши задачи.

- 1. Грецкие орехи содержат 50% жира, 20% углеводов и 5% белка. Какова масса этих компонентов в 100г продукта? Сколько можно съесть грецких орехов человеку массой 60кг, чтобы потребить суточную норму жира?
- 2. Растительное масло массой 17,56 г нагрели с 3,36 г гидроксида калия до полного исчезновения масляного слоя. При действии избытка бромной воды на полученный после гидролиза раствор образуется только одно тетрабромпроизводное. Определить структурную и молекулярную формулу жира.
- 3. При сжигании 86,2 г неизвестного твердого нерастворимого в воде вещества природного происхождения получили 123,2 л (н.у.) углекислого газа, 95,4 г воды. Установите возможную формулу данного вещества и составьте уравнение его гидролиза в щелочной среде.

Здесь ты можешь подробнее посмотреть про жиры

